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Abstract: We develop a model of political competition between types that differ in their
subjective model of the data generating process for a common outcome. We show that
political competition does not weed out misspecified models which are simpler as they ignore
some relevant policy variables. Specifically, periods in which those with a correctly specified
and more complex model govern increase the specification error of the simpler world view,
leading the latter to underrate the effectiveness of complex policies and overestimate the
positive impact of a few extreme policy actions. Periods in which simple types implement
their narrow world view result in subpar outcomes and a weakening of their omitted variable
bias. Policy cycles arise, where each type’s tenure in power sows the seeds of its eventual

electoral defeat.

“Democracy is complex, populism is simple” (R. Dahrendorf)

I Introduction

Individuals differ not merely in their economic interests and preferences, but also in their
fundamental understanding of the data generating process that underlies observed outcomes.
Consequently, because they consider the same historical data through the prism of different
models, fully rational and otherwise similar actors can have persistent differences of opinion,
as witnessed by the endurance of academic debates in areas as diverse as macroeconomics
and physics. In politics, such differences in model specification translate into differences
in realized policy decisions when different groups are in power. The consequent interplay
between beliefs and policy can generate systematic correlations between observed data that
sustain differing beliefs and biases.

This paper considers political competition between types that share the same interests

and preferences over common outcomes but differ in their subjective models of the causes
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of these outcomes. Because of the infinite number of potential regressors and finite number
of observations, all actors must restrict the set of policies they consider relevant, i.e. may
have non-zero effects on the common outcome. Our principal aim is to investigate whether
political competition weeds out actors with simplistic misspecified models, and what are the
eventual long term beliefs of the actors in this polity.

Specifically, we consider the following dynamic model. Output is a simple linear function
of a set of policy variables as well as a random shock. Everyone in the polity is interested
in maximizing this output (subject to a resource constraint), but individuals differ in their
subjective models of the relation between policy variables and output. A "complex" type has
a correctly specified model in that it knows that all these variables affect the outcome, and a
"simple" type has a misspecified model and considers a smaller set of relevant variables. For
example, while a complex type may consider crime as best treated with a range of policies, a
simple type come to view crime as stemming from a single cause, e.g. policing. Both types
start with a prior and overtime learn about the parameters determining the magnitude of
the effect of each policy variable on the actual outcome.

We assume that political competition takes a simple form so that the type that wins is the
one that has a higher intensity of preferences (that is, the type that is more keen on winning
the election rather than letting the other side win). This type chooses her ideal configuration
of policies which are then implemented with small "bureaucratic" noise. At every period
output is observed and both types use OLS to update their beliefs. Note that over time,
observations are not iid as learning and hence current policies depends on previous shocks.

In our key result in Section III we show that the dynamic process converges to a unique
steady state. This steady state is characterized by two important features. First, the com-
plex type, which has the correct model, is unable to permanently defeat and remove from
power those with misspecified simple beliefs. Equilibrium is therefore characterized by power
sharing between the two types (and hence equal intensity of preferences). When the complex
govern and implement their broad policy agenda this increases the omitted variable bias of
the simple, as they attribute the successful outcomes of the full range of complex policies
to moderate actions taken on a few dimensions. This increases the simple’s assessment of
the likely effectiveness of a more decisive narrow policy and mobilizes them in support of
political candidates who will implement it. However, when the simple govern they produce
systematically inferior results, as their extreme actions are revealed to be less effective than
anticipated. This reduces the intensity of both their desired policy and political activism,
thereby allowing complex types to regain power. Thus, we find that the economy suffers
from inevitable political cycles and the recurrence of inefficient policies.

The second feature of the steady state is the connection between simple world views and



extremism. We show that the beliefs of the simple type converge to a multiple, larger
than one, of the corresponding beliefs of the complex. As a result, when in power, the simple
implement a narrowed and exaggerated version of complex policies. Intuitively, when policies
of the two types are not collinear, there is enough variation in the data so that the simple
type approximate the expected average outcomes of polices both when they are in power
and when the complex are in power. However, as we show, this induces the simple type to
become more eager to win the election and thus contradicts equilibrium power sharing. In
short, the simple type cannot learn too much in equilibrium, leading to inflated beliefs on
all the policies it considers.

In the unique equilibrium we find there are perpetual transitions of power between the
complex and the simple types, who implement extreme and ineffective policies. In this sense,
our model may shed some light on the recurrence of political populism. The amorphous
concept of "populism" has perhaps as many definitions as authors. Simple world views,
while not the only feature of populism, are an important aspect of such movements. For
example, many recent theories focus on the anti-establishment rhetoric of populism,? which
represents the "will of the ordinary people". Almost by definition, the will of the people is
simple; it has to be a common ground of many. An additional frequent theme is that the
policies of populist politicians are extreme, misguided and harmful to the very groups that
support them (e.g., Dornbusch and Edwards 1991). Our framework provides a motivation
for the recurrence of large policy deviations with subpar outcomes that are supported by
rational voters.

Our theoretical contribution is to establish convergence in a learning environment with
a misspecified model. Convergence of beliefs in such environments is not guaranteed, and
is especially problematic with multidimensional state spaces (Heidhues, Koszegi & Strack
2018, Bohren & Hauser 2019, Esponda, Pouzo & Yamamoto 2019, and Frick, lijima & Ishii
2020). Our paper provides an example of how convergence can be proven in a model with
multiple agents, a multidimensional state space and continuous actions. Specifically, we use
noise in the implementation of policies to establish convergence in an OLS framework.

In Section IV we also consider a static notion of equilibrium in the spirit of Berk-Nash
equilibria.®> This allows us to study more general Bayesian environments. We show that an
equilibrium analogous to the unique equilibrium above, with political cycles and extremism,

is a Berk-Nash equilibrium. We also show that any Berk-Nash equilibrium of our model

2See Mudde and Kaltwesser (2017).
3Esponda and Pouzo (2016, 2018) explore the implications of model misspecification by suggesting the

Berk-Nash (BN) equilibrium. In a BN equilibrium agents play optimally with respect to the model that is
the best fit, i.e. the model that minimizes relative entropy with respect to the true distribution of outcomes

under the equilibrium strategy profile.



involves inefficient policies.

Interest in learning with misspecified models dates back at least to Arrow & Green (1973),
with examples including Bray (1982), Nyarko (1991), Esponda (2008) and, most recently,
Esponda and Pouzo (2016) and Molavi (2019). Several recent papers feature interactions
between competing subjective models that share features of our framework. Mailath and
Samuelson (2019) consider individuals with heterogenous models who exchange beliefs se-
quentially once they receive a one-off (private) data and characterize conditions under which
beliefs converge. Eliaz and Spiegler (2019) present a static model of political competition
based upon competing narratives that draw voters’ attention to different causal variables
and mechanisms. They focus on a static equilibrium and on the possibility of “false posi-
tive” variables (which are not necessarily policy variables). Montiel Olea et al (2017), with
auctions as a motivation, consider competition between agents that use simple or complex
models to explain a given set of exogenous data and find that simpler agents have greater
confidence in their estimates in smaller data sets and less confidence asymptotically. In our
framework the endogenous data produced by actors with different specifications generates
persistent biases and differences in beliefs that asymptotically keep both types politically
competitive.

Our paper builds on a literature of political-economy models of sub-optimal populist poli-
cies. Acemoglu et al (2013) model left-wing populist policies that are both harmful to elites
and not in the interests of the majority poor as arising from the need for politicians to signal
that they are not influenced by rich right-wing interests. Di Tella and Rotemberg (2016)
analyze populism in a behavioural model in which voters are betrayal averse and may prefer
incompetent leaders so as to minimize the chance of suffering from betrayal. Guiso et al
(2017) define a populist party as one that champions short-term redistributive policies while
discounting claims regarding long-term costs as representing elite interests. Bernhardt et
al (2019) show how office seeking-demagogues who cater to voters’ short term desires com-
pete successfully with far-sighted representatives who guard the long-run interests of voters.
Morelli et al (2020) show how in a world with information costs incompetent politicians
who simplistically commit to fixed policies can be successful. Our framework expands this
literature by linking the pursuit of sub-optimal policy to the bias created by a misspecified
interpretation of the outcomes of periods of optimal rule.

The paper proceeds as follows: Section II presents our basic framework, wherein voters
differ in their beliefs regarding the possible determinants of common outcomes. Section
IIT establishes the convergence to the unique steady state and discusses its implications. In
Section IV we discuss several extensions and modelling assumptions. In particular we discuss

the relation between the unique equilibrium we characterize and the Berk-Nash equilibria of



this model. An appendix contains all proofs not in the text.

IT The Model

The Economic Environment: We consider a common outcome y € R whose realization

at time ¢ is governed by the data generating process:

(I1.1) y = (% + 1) B+ &

where x;, and 3 are vectors of k policy actions in R* and associated parameters, and ¢, € R,
a mean zero iid normally distributed random shock.*®> We assume that all elements of 3
are non zero. The term n, € R¥ is a k—vector of policy noise which could be thought of as
small policy implementation shocks. The components of noise n; are iid with zero mean and
diagonal covariance matrix 021, and are independent of both the policy vector x; and the
shock to outcomes ;. We add noise to all relevant k policies, but alternatively we could add
noise to only the set of policies that are implemented at each period and the results would
be the same.

Although y is described as a single outcome, one can equally think of it as a preference
weighted average of multiple outcomes that are influenced by x,;.5 Below, we use bold letters
to denote vectors and when it does not lead to confusion, often drop the subscript ¢, writing

X, y,n and €.

Subjective Models: We assume that citizens are divided into two "types" based upon
their subjective model about which of the unknown parameters in 3 can potentially be non-
zero. We shall focus our analysis on the case where "complex" types (C) that believe all
elements of 3 might be non-zero compete politically with "simple" types (S) whose model
is misspecified, in that the policies they think are relevant exclude some of the non-zero
elements of 3. We assume that it is common knowledge that ¢ is normally distributed.

We use the subscript ¢ to distinguish between the full £ x 1 vectors of effective policies
and parameters (x and 3) and the k; < k sub-elements of these that type i € {S,C} thinks
are potentially relevant (x; and 3;). Specifically, ks < k. = k. In addition, we denote by x;;

the vector of policies that ¢ finds relevant and are implemented when j is in power. While

4We can generalise our results to allow for a constant term in the output function under some additional

assumptions.
5In Section IV where we study Berk Nash equilibria of our model we will consider more general distribu-

tions of the shock, f(e).
OTf utility is a weighted average of i components each with y;; = (x; + n¢)'B; + i1, then the outcome,

parameters and error term in I1.1 are simply the weighted average of those components.



the subjective model of type i € {S,C} is fixed, the beliefs of type ¢ € {S,C} about the
magnitude of the elements in 3, will evolve over time according to OLS estimation.

Below we will assume linear utility; together with the linear formulation of y, this implies
that only mean beliefs will matter, and we will henceforth denote the vector of mean belief
at period ¢ by B, and 3, respectively.

We use H; = X; + N; to denote the ¢ x k history of desired policy and iid noise. Each
type will use the associated ¢ x k; columns H; of H in a regression model to derive their
mean belief 3;. We assume that prior beliefs are normally distributed. As our results are in
any case asymptotic, normal beliefs of this sort can be justified by the observation of a long
pre-history of policy, as under fairly general conditions the likelihood function determines
the shape of the posterior (Zellner 1971).” As the error ¢ is independent of contemporaneous
policy, period by period updating then leads to mean posterior beliefs (during the period of

analysis) in the form of the OLS estimates:
(11.2) B; = (H},Hy) " Hyy,.

In Section IV we consider a more general model where each group can also believe that
non-relevant policies affect y, and so initially S may consider more policies than C. We show
that as long as S considers a subset of the relevant policies that C' considers, they end up

with a simpler model of the world.

Preferences and optimal policies: We model utility with the minimal structure that
allows for a tractable presentation. Specifically, we assume the utility citizens derive from

the common outcome is linear:
(11-3) Ut(yt) = Y,

and that the choice of policies is subject to a budget constraint, and so x;x; < R, where
R is some bounded, exogenously-given, resources. The constraint is formulated so that it
allows us not to worry about the signs of the elements of 3 or x.

Given the above, it readily follows that:

Lemma 1: At any period, given some mean belief B, for type i € {S,C}, the optimal
myopic policy solves
(I1.4) max Bx + MR — x'x)

x€RFi

"Specifically, consider prior beliefs for each type across the policies they believe are relevant are normally
distributed with mean 3,, and joint covariance matrix J?OVZ-_Ol, while the prior probability density function on
02, is inverted gamma. We then define the pre-history such that V;o = H},H;o and 8,5 = (H/,Hio) "' Hyyo.



resulting in

arsy  Aa=2yPPi g [ B L e Bi= B = \/BBNVE

While the solution to the Lagrangian problem is straightforward, we note here that given
the constraint R, types which have more extreme parameter estimates, as measured by
B:Bl, believe they know how to pursue more effective policies, as measured in g[x}, 3;], and
consequently feel more constrained by the resource limitation R, as measured by \. We will
show that this will feed into their relatively higher intensity of preferences to win election
and choose policies.

In each period political competition will determine which type will choose current period

policies. We now describe the model of political competition.

The political competition: We first define the notion of intensity of preferences. Let

where F; denotes the expectation based upon the beliefs on 3; of each type and gj(x;f, B;)
is type i's expected outcome when type j chooses their optimal policy. The intensity of
preferences of type i is therefore the loss this type incurs from type j's ideal policy compared
to her own ideal policy, given her subjective model. I; does not necessarily equal —I; as

beliefs differ across the two types. We then have:

(11.7) I, = Bx:-pBx

sc)

Y- al o x
IC - IBCXC_ Xess

We assume that at any period ¢, the type that has higher intensity of preferences wins
the election (and implements her ideal policy). Below we construct a political competition
model which rationalizes this assumption.

Assume that the polity consists of two equally sized groups, simple and complex, each a
continuum. Each group is represented by a "citizen-candidate" that runs in the election and
if elected, implements the type’s ideal policy.® Voting is costly, but citizens vote because they
believe that with some (exogenous) probability p their vote will be pivotal.” Consequently,

a voter [ of type i will vote (for their own representative) if the expected gain from the

8Given how we model voting decisions, it is easy to see that the presence of such candidates, offering

voters of each type their ideal policy, will drive out all other policy platforms.
9For simplicity we are not modelling strategic voting, i.e., p is not determined endogenously in the model.

The parameter p could be interpreted as the perception of voters about the probability they are pivotal in

the election.



implementation of type i’s optimal policies relative to those of type j exceeds voter I's cost
of voting, ¢, i.e.:
(I11.8) pl; > ¢

We assume that ¢; is iid drawn from a distribution of voting costs G(c) and that the cost
distribution is the same for both groups. Thus, the vote share that candidates of each type
garner will be an increasing function of the intensity of their type. Consequently, the election
is won by the candidate representing the type with the greatest preference intensity. The
results below can be generalized to allow for unequal group sizes and different distributions.
For example, the case of unequal groups implies the smaller group will require a certain
margin of voting preference intensity to motivate its base enough to win an election.

Before defining our equilibrium notion, we now characterize voters’ intensity of preferences:

Lemma 2: Intensity of preferences for type i is an increasing function of 3,3;, hence:

(11.9)  L;>1;iff B, > B,B,

To see how this arises, note that the gain in expected utility for a voter from pursuing
an optimal policy x* versus an alternative policy in which a k£ x 1 vector ¢ is added to x* ,

denoted by x7 5, that satisfies the same resource constraint is given by:
(II]'O) Q[X*7/B] - g[Xj—&B] = _6/B

Substituting using optimal policies and the fact that —§’x* = 26’8 , as both x*x* and

(x7%4) (x%4) equal R, we see that:

B s 7 BBos
(111) g Bl - yxis. Bl =\ 7
R 2
As a result, individuals with more extreme parameter estimates feel the resource constraint
more keenly and hence lose more from a sub-optimal movement d away from their constrained
choice. Hence the dynamic change of power in our model will be determined by the relative

magnitude of beliefs of the two types.

Dynamics: We consider the following dynamic process:

1. In any period t, the winning type i € {S,C}, chooses her ideal policy x}, given her
beliefs, 3;,.

2. Given xJ,, y; = B}, + &; is realized (and utility U; gained). Both types update their

beliefs using OLS. Mean beliefs evolve to Bj(t 11y, forall j € {S,C}.
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3. Type S (C) wins the election at period t + 1 iff B;(Hl)BS(tH) > (<) B;(Hl)BC(HI). In

the case of equal intensities, some tie breaking rule determines the winner.!°

Note that while the model of .S is misspecified, this type, by using OLS estimation, still uses
Bayes rule "rationally" to learn and update her beliefs. Crucially, as each type learns from
the observed actions which depend on the endogenously evolving beliefs, the data observed
at time t, both past policies and outcomes, are not iid overtime.

While in the above model we assume myopic choice of policies each period, the exogenous
noise n "mimics" low-cost experimentation that allows both types to learn better within the

prism of their subjective model. We also discuss extensions to this assumption in Section
Iv.

III Perpetual political cycles and extremism

In this section we present Theorem 1, our main result, characterizing the unique steady state
the dynamic model converges to. The steady state involves political cycles and extreme
policies espoused and implemented by type S.

To formalize the notion of political cycles, let 6, denote the share of time that j € {S,C}
had been in power up to period t. We then have (for the proof see Appendix I):

Theorem 1: For sufficiently small o2, the polity converges in probability to a unique

equilibrium, in which: (i) Political cycles: 0, 2 0,, 0 < 0, < 1, (ii) B, = B. = B, (iii)

5B
a8, > L

Colinear and extreme beliefs for S : B, % B, = (1%)8, where 7* =

The asymptotic equilibrium involves perpetual political cycles in which power changes
hands between the two types, apart from equilibrium paths of measure zero. As we now
illustrate, the dynamics of belief updating imply that the type in opposition becomes more
and more intense about taking office vis a vis the type that is currently in power. In addition,
the simple type’s beliefs and prescribed actions converge to be colinear and more extreme
than of those that the complex type espouses on the set of policies both deem relevant.

Below we provide an intuition for Theorem 1 in two steps. We first assume that beliefs
and the share of time that S is in power, ,, converge and characterize the steady state. We
then delve into the more technical discussion of what is involved in proving convergence of
beliefs and 0,;.

10The exact tie breaking rule is inconsequential.



III.1 Characterizing the steady state

In this section we assume that beliefs, 3,;, B,;, and the share of time that S is in power, f,
converge. First, given that type C has the correct model and given the policy implementation
noise, type C' should converge to know the true parameters of the model, i.e., 3., 2, 3. This
is shown formally in Appendix I and below we maintain this as an assumption.

We now focus on the asymptotic beliefs of S, Bsn as well as on the limit values of 0, 0.,
(where 04 + 0, = 1). Let X;; denote the limit of vector of chosen policies when type j is
in power that S finds relevant. We will denote the full k£ x 1 vector of limit policies that C'
implements by x.

Given convergence, the OLS coefficients converge to satisfy the following equation:!'!

(III]') HSXES(X:;BS - X:/S s) + HCXZC(X:::IBS - XZ/ ) = 0-31(/65 - Bs)?

*/ 1]

*B, —x3,) and (x B, — x*'3) are the average mistakes of type S, when S is in

where (x
power and when C' is in power respectively.

We first provide intuition for the result of perpetual cycles, which implies that 0 < 0, =
1 —6. < 1. To see this, suppose first that S is in power indefinitely, i.e. that 6, = 1. In this
case, (I11.1) implies that S learns the true parameters (3,; intuitively, in this case S has the
correctly specified model and a small amount of noise guarantees true learning. However,

given that it ignores some relevant policies, we have

(111.2) \/B.B, = \/B.8, < VBB.

which is a contradiction to the supposition that S is in power indefinitely as given that
B, = B, (I11.2) implies that C have a higher intensity.

Suppose now that the polity converges so that C' are in power indefinitely, i.e., 6. = 1.

Now we make use of the fact that the level of noise is not too large. When o2 is small, it is
easy to see that in the solution to (I71.1), (x*.8, —x'3) will have to be small, converging to
zero as o2 shrinks to zero. Intuitively, with small noise and the same policies being chosen

over time, type S will learn to predict expected outcomes ¥, i.e., for small o2,

(I11.3) x¥B,~x'3.

Note however that the optimal action of S is x} rather than x? .. Therefore, type S believes
she could generate a strictly higher expected outcome if she was in power as S can take all

resources from C’s policies that she does not believe to be relevant and add them to the

"This is the first order condition derived when minimizing expected squared mistakes; recall that o2 is

the variance of noise in policy implementation.
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policies she deems relevant. As a result we have:

(111.4) xB, > x3.B,
Combining (I71.3) and (/11.4), we have that,
(I11.5) x¥B, > x78.

Noting that x} = \/%\/R and hence B;x: = B;BS\/E, and similarly that x'3 =+/ B BVR,
(II1.5) implies, o

(I11.6) \/BBNVR = x/B,>x/B=VBBVR=
VB.B, > VBB,

which contradicts the supposition that C' is in power, as the intensity of preferences of S is
higher.!?
Thus, we must have 0 < 6, < 1, and the equilibrium must satisfy equal intensity of

preferences, or:
(111.7) \/B.B.= VBB

Intuitively, when one group is in power indefinitely, the two types can in the long run get
close to understanding the mean effects of policies. But this implies, given their different
subjective models, that the two types have different beliefs, which leads to greater intensity
of preferences for the type in opposition. Specifically, if C' is in power, S’s beliefs will suffer
from an omitted variable bias; as a result, S believes it can increase its utility by gaining
power and inflating policies. When on the other hand S is in power, it is C' that gains higher
intensity of preferences as it has additional parameters it believes to be effective, and thus
knows it can improve the outcome as well.

We next show that type S’s beliefs must be colinear with those of type C' on the relevant
shared policies. Moreover we show that on these shared policies, S espouses more extreme
policies.

Note that the linear relation between S’s optimal actions and those of C' have implications
) and (x? 3, — x'3). Suppose first that

the steady state actions of S are not colinear with those of C. For small o2 this implies,

. . . . . *I A */
to minimizing expected mistakes (x}.8, — x}.

S S

from (/11.1), that the solution will involve that the expected mistakes of S in each regime,

*/ 13

Y8, —x:0,) and (x¥.8, —x3), are small and are close to zero (non colinearity of actions

(x

121f the noise level is too large, then S will learn the truth about the parameters it considers, and C' may

remain in power indefinitely.
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makes this possible).!® So for small o2 we have,

(I11.8a) x*B,—x"B, ~ 0

S

(IT1.8b) x¥B, —x’B~0

However, similar to our arguments above following from (111.3), (I11.8b) contradicts equal
intensity and cannot arise in equilibrium. We therefore conclude that beliefs and policies
must be colinear. In other words, S cannot learn too much in equilibrium: Equilibrium
policies have to be colinear to limit the learning of S and specifically her ability to predict
expected output at each regime.

To see why S will hold more extreme beliefs than type C' remember that in the long run
the two types have equal intensity, i.e., B;Bs: 3'3. Combining the colinearity result, so that
B, = 73, for some 7, and the equal intensity condition, we pin down the equilibrium degree

of colinearity 7* :

(I]]9> (T*)2<IBISIBS) — ,8,,8 = 7 = /Bl‘zl/gs >1=
_ [ps
185 - 6;63ﬂ

The collinearity result implies that .S is more bold in its policy prescriptions, and that both
groups agree on the relative effectiveness of the policies that they both consider relevant.
Therefore, in our model simplicity implies extremism.

From (/711.9) we see that the more important are the parameters that S ignores, relative
to those she considers, the more extreme are her beliefs, as well as policies. As we show, this
will imply a lower equilibrium value for 6. Intuitively, to generate more extreme beliefs in
equilibrium, S needs to suffer from a higher omitted variable bias, which arises when C' is in
power more often. Thus, political cycles must result in just enough omitted variable bias to
equate intensity. Specifically, to solve for f,, we plug the expression for 3, from (I11.9) in
(I11.1) and get:

1—7*%
fy = ———-
1+ 7*

where it is easy to see that 6, is lower when 7* is higher. The following observation summa-

Y

rizes the above discussion:

Observation 1: The more important are the policy variables that S ignores, the more

extreme are S’s belief, and the less time it spends in power.

13When o2 = 0, S would be able to conjecture correctly the average output at each regime. In other words,
non colinearity implies that S can solve (I1I.1) by solving both equations below as they are independent of

one another.
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Note that in equilibrium, when S is in power, S is on average disappointed in its policies.
On the other hand whenever C' is in power, type S is positively surprised. The following

observation characterizes the expected mistakes of S in the different regimes:
Observation 2: In the limat:
(I11.11)  x7B,>x"p3

(I11.12) x¥ 3, < x¥'B.

These two inequalities imply the long-term dynamics of S’s beliefs and policies, where
they moderate when in power but become more intense when in opposition. To illustrate
this graphically, consider a simple one-dimensional example where the true model is y =
B171 + Byxe + €, but S believes that 8, = 0 so that only z; is relevant.!* The equal intensity

condition pins down the belief of S as follows:

(I11.13) By =/ (81)? + (B,)?

The figure below describes the asymptotic belief of S, close to the equilibrium above,
when C' had already converged to the truth. Close to the equal intensity belief, whenever
the intensity of preferences of S is larger than that of C| it gains power and implements its
ideal policy. But then, on average, S becomes disappointed in the outcomes it generates
and moderates its belief. Simple voters are systematically disappointed by the outcomes of
the extreme policies implemented when their populist politicians are in power. This leads to
a gradual diminution of beliefs and consequent moderation of policy, until those with more
complex views once again take power. Whenever S’s intensity falls below that of C, and C
gains power, S starts to inflate the effectiveness of x;. The surprising success of policy under
the complex gradually convinces simple voters of the value of implementing more extreme
and focused policies, increasing their probability of voting in favour of populist politicians
who advocate narrow and extreme solutions to complex problems. The equal intensity belief

is then a basin of attraction for this dynamics.

141n this one-dimensional case colinearity is trivially satisfied.
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Beliefs of S increase Belief of S decrease

e ————————— <
@

C in power ﬁ1 S in power

In Section IV we report additional comparative statics results in terms of the effect of

good and bad ¢ shocks on the speed of power shifts.

II1.2 Convergence

In general, establishing convergence with misspecified models is problematic even with exoge-
nous iid data (see Berk 1966). Having endogenous data, as we have in our model, introduces
more challenges as observations are non iid. As we mentioned in the introduction, sub-
stantial progress has been made in the literature analyzing the convergence properties of
misspecified models with non iid data.!'® But with respect to this literature, our model is
further complicated by having multiple players, continuous actions, and multidimensional
state space.

Specifically, multiple dimensions of policy allows for the possibility that types entertain
multiple equilibrium beliefs in the long term. This multiplicity introduces additional chal-
lenges for establishing convergence as it is hard to prove that types do not perpetually
"travel" along this continuum of beliefs. As we show below, the policy noise, n, allows us to
establish convergence in this model.

In the appendix we prove convergence with the following steps. First, we establish a law
of large numbers for our framework that relies on the fact that at period ¢, the regressors
x; and the shock ¢; are independent of each other. While the regressors depend on past
realizations of the shock, they are not correlated with the current one. This law of large
numbers allows us to show that the beliefs of C' converge, with the help of the noise n, to

the true parameters and so 3,= 3. Given these two steps we can derive a deterministic law

15See for example Esponda, Pouzo and Yamamaoto (2019) and Frick, Tijima and Ishii (2020).
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of motion for the asymptotic beliefs of S.

(I11.14) B,* B, + cM™'B3,, where

X' X5 te+tso? ! !
M — SS + + &Ik‘& + IBS/IBS , C — 1 _ /BS//BS
t.R te R B3 B

where X, denotes the matrix of regressors that S find relevant and have been implemented
when S has been in power, and ¢; denotes the number of periods type ¢ has been in power
up to period ¢ (so that ¢;/t = 0).

The policy noise allows S to learn the true relative merits of each policy. Moreover, as
long as S’s policies are not colinear with those of C, its policies also provide enough variation
in the data so that S can learn the true relative merits of the policies they focus on. This
implies that beliefs and policies converge to be colinear. The omitted variable bias captured
above by cM 13, shifts up and down until asymptotic power sharing results in just enough
bias to reach equal intensity, and the dynamics of this are similar to those described in the

one-dimensional case.!®

IV Additional results and discussion

In this Section we present some additional results and discuss alternative modelling assump-

tions.

IV.1 Relation to Berk-Nash equilibrium

In this section we examine the relation between our results above and a static notion of
equilibrium in the spirit of Berk-Nash equilibrium (Esponda and Pouzo 2016). We focus on
a more general Bayesian framework and assume that there is no policy noise. In particular,
we maintain all the assumptions of the model above but assume more generally that: (i) the
prior on B € R* is not necessarily normal, (ii) updating follows Bayesian updating and the
distribution of the shocks is governed by (commonly known) f (), which is a continuous and
differentiable density on R, and satisfies the some boundedness conditions as in Berk (1966),
so that the minimum Kullback-Leibler distance below exists,'” (iii) o2 = 0.

A Berk-Nash equilibrium is a static solution concept for a dynamic game of players with
misspecified models where actions are optimal given beliefs and beliefs rationalize the ob-

served output which arises given the actions played. Berk (1966) shows for the case of iid

data that beliefs stemming from a misspecified model will concentrate on those that minimize

16The Appendix illustrates the phase diagrams derived from (I11.14).
1"These are conditions (iii) and (iv) in Berk (1996), referred to in Lemma 2 in that paper that proves the

existence of the minimum of Kullback-Leibler distance.
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the Kullback—Leibler (KL) distance to the true beliefs.!® Using this notion of minimizing
the KL distance, Esponda and Pouzo (2016) define a Berk-Nash equilibrium.

Here we adopt the Berk-Nash solution concept to our model.'? An important part of this
definition is the parameter 05 € [0, 1] which denotes the probability that type S is in power.
In the dynamic interpretation of this equilibrium, analyzed above, 6, captures the fraction

of time that S was in power.

Definition 1: A Berk-Nash equilibrium consists of beliefs for i € {S,C} with mean 3;,
a policy choice x;, and a probability that type S is in power, 0, € [0, 1], such that:

(IV.1) Optimal actions: x; is the optimal action given mean beliefs 3; and so x; = x}.

(IV.2) Power sharing according to intensity: 0, = 1 (0) if 3.8, > (<) B.B.; if
B.B, = B.B.. 6. < 0.1].

(1V.3) Beliefs minimize Kullback—Leibler distance: Given actions x.,x, and 6, each
vector in the support of s beliefs solves, according to their subjective model:

H}i.n E.[0s1n m +(1—-64)In f(ﬂ’xi(—gzxzara)]

K3

We first show that an equilibrium analogous to the one identified in Theorem 1 is a Berk-
Nash equilibrium of the more general model (proofs for the results in this Section are in
Appendix II):

Proposition 1: There exists a Berk-Nash equilibrium with B8, = (3, = 78, and
1

0 < 0, < 1. In this equilibrium, when f is normal, 0, = -~ =

The proof of Proposition 1 follows similar arguments to those in section III using the
notions of expected mistakes under the subjective models. To see this suppose for example
that C is in power with probability one, i.e., #, = 0. By (IV.3) each vector [‘38 in the support
of S’s beliefs must minimize

(IV.4) E. 1@%)

By Gibb’s inequality, the Kullback—Leibler divergence is larger or equal to zero, holding

with equality if and only if both densities, the true density and the subjective density,

/

coincide almost everywhere. This implies that (1V.4) is minimized at 8'x* = 3,x*, for each

A

B, in the support. By linearity, this implies that the mean beliefs of S also satisfy:

(IV.5) B'x: =pB.x:,

18 Intuitively, minimising the Kullback-Leibler distance is similar to maximising the likelihood of previous

observations.
90ur model is not formally a game, which is why we cannot use the definition of Esponda and Pouzo

(2016) directly.
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and the argument follows directly from the argument we have made in Section III.

But the definition above allows for multiplicity of Berk-Nash equilibria. Consider for
example an equilibrium configuration in which both types hold exactly the same average
beliefs. Suppose further that these are the true parameter values for all the policies that
S’s subjective model deems relevant and zero average beliefs on all other policy parameters.
Thus, C' "abandons" some relevant policy variables that were included in her prior belief.
It is easy to see that this configuration, together with any 6, in [0, 1], constitutes a Berk-
Nash equilibrium. In particular, C'is satisfied with believing that some policies are irrelevant,
because in equilibrium these policies are never played. In section III, the policy noise ensured
that C' did not "abandon" any relevant policies and hence the equilibrium was unique.

Even though there are multiple equilibria, we show that policy inefficiency is an inherent

feature of any Berk-Nash equilibrium:

Proposition 2 (Inefficiency of political competition): Any Berk-Nash equilibrium
will involve inefficient policy implementation with a strictly positive probability. In particular,
any equilibrium will be characterized either by 65 > 0 or by C' having zero expected beliefs

on some of its relevant policies.

IV.2 More general subjective models

Above we considered an environment in which the beliefs of "complex" types are correctly
specified, in that they include all relevant policies, whereas "simple" types erroneously ex-
clude a subset of these. In Appendix I we consider an extension in which both types can
also consider policies which are irrelevant. Specifically, we maintain that the simple type
considers a subset of the relevant policies that the complex type considers, but assume that
the prior beliefs of both types may also include some irrelevant policies that have zero effects.
We impose no a priori restriction on the relative number of policies each type believes may
be relevant. That is, it may be that the "complex" type overall considers a smaller number
of policies to be relevant.

We show that the endogenous asymptotic equilibrium looks much like the one in our basic
model and so the "simple" and "complex" tags arise endogenously. That is, we show that
the beliefs of both types regarding policies that are actually irrelevant converge on 0 (this
arises through our use of small policy implementation noise). Consequently, the non-zero
beliefs of those with the misspecified model become "simple" relative to the "complex" views
of those with the correctly specified model. While the beliefs of the complex converge on
true parameter values, the beliefs of the simple converge on a multiple of the true parameter

values, as in Theorem 1.

17



IV.3 Local dynamics: Random outcomes and the political cycle

A peculiar characteristic of political life seems to be that random outcomes benefit or harm
incumbent parties. In the online appendix we show that this feature arises in our model
through the fully rational Bayesian updating of beliefs. Random shocks change estimates of
the effective- ness of policy, but these effects are stronger for the incumbent party which is
implementing its desired policy combination.

We focus on outcomes close to the steady state and, to simplify the analysis, with negligible
amounts of policy noise. We show that close to the steady state a random negative ¢ shock
to y lowers the relative intensity of the incumbent group, hastening regime change, while
random positive € shocks to y strengthen the relative intensity of the incumbent group,
lengthening their stay in power in the current political cycle.

Specifically, when the simple group is in power, a negative shock reduces their intensity,
as their belief in the effectiveness of the policies they deem relevant falls. Complex beliefs
in these same policies also fall, but the complex belief in the efficacy of policies the simple
deem irrelevant, and hence do not implement, rises, as the poor outcome under simple
rule convinces the complex that these neglected policies are more effective than previously
thought. These two effects offset each other, and complex intensity remains constant. In
sum, a negative shock lowers the relative political intensity of the simple, hastening the
transfer of power, with positive shocks having the opposite effect.

When the complex are in power, a negative shock reduces the belief in the effectiveness
of policies of both types, but the effects on intensity are greater for the complex, for whom
intensity depends upon a wider range of policies, all of which are seen to be failing. Conse-
quently, negative shocks accelerate regime change, ushering in further negative outcomes as
the simple implement misguidedly narrow and intense policies, while positive shocks lengthen
the time the complex hold onto power and the polity continues to benefit from a full range

of moderate policy actions.

IV.4 Endogenous resource constraints

In our model we have assumed a fixed resource constraint R. We can extend the model to
allow the different types to endogenously choose their desired level of resources. In particular,

we can assume that the utility citizens derive from all common outcomes is given by:

U=y + V(Ry),

where as before R; = x}x; represents the resources used in implementing policy x; for y;, while

V' represents the utility derived from policy outcomes over which there is no disagreement
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regarding causal mechanisms. V' is a reduced form, representing the utility that can be
achieved in other policy areas given the allocation of resources to 1;, and the assumptions
V' < 0 and V" < 0 are natural. To derive analytical results, we work with a second-order
approximation of V' as a quadratic function of R;. We can then show that intensity of
preferences is also an increasing function of the magnitude of beliefs. Assuming that R, is

bounded from above, we can then extend all our convergence results accordingly.

IV.5 Discussion of other assumptions

Our framework is one of model misspecification and as such needs to take a stand on the
nature of the misspecification. We have chosen to focus on linear misspecified models for
several reasons. First, as our focus is on simplistic versus more intricate world views, linear
models that differ in terms of the set of free parameters allow us to define simplicity in a
straightforward way. Non-linear models will surely introduce more difficulty in formalizing
a notion of simplicity. Moreover, the linear structure of the misspecified model, together
with the quadratic resource constraints, allow us to easily calculate and analyze the notion
of intensity of preferences which is the main driver of the political force in the model.

We also assume a simple utility function that is linear in y, which implies that utility is
a function of mean beliefs only. For more general utilities the whole distribution of beliefs
would matter. Montiel Olea et al (2017) show that in a model with exogenous data, complex
models (which abide with the truth) would induce lower variance of their beliefs when data
is sufficiently large. This would imply an advantage to the complex group. Thus, our results
hold as long as individuals are not too risk averse.

In terms of our political model, we assume that the winning politician implements her
myopic ideal policy; that is, she does not experiment in order to learn or to manipulate
future actions and political outcomes. Intuitively it is more difficult to woe voters with
sophisticated long term policies as compared to just sticking to the myopic ideal policy. To
a degree, the addition of noise captures some form of experimentation. More sophisticated
forward strategic behavior, with the purpose of manipulating the actions and outcomes of
future periods, is beyond the scope of our analysis. Such a possibility may potentially affect
the political cycle result we report, but we conjecture that the views advocated by those
with a simple model will still affect political outcomes.

We use a simple political model in which intensity of preferences is the key to electoral
success. We have two groups, and we adopt a citizen candidate model so that politicians offer
voters exactly their ideal polices. One may imagine other models of political competition,
e.g., probabilistic voting with office motivated politicians, which essentially implies that

politicians choose policies to maximize average welfare. While this would yield different
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policies as well as learning patterns, a key feature of our analysis will remain: In equilibria,
policies will cater to group S to some degree. That is, the omitted variable bias in S’s beliefs
would mean that they would prefer stronger policies on the policies they deem effective. Any

policy that maximizes welfare will then exhibit such a bias.

V Conclusion

Our analysis has shown how simplistic beliefs can persist in political competition against a
more accurate and complex view of the world, delivering sub-par outcomes on each outing
in power and yet returning to dominate the political landscape over and over again. In the
framework presented above simplistic beliefs arise as a consequence of a primitive assumption
of misspecification, but we recognize that there are deeper questions to explore. A recent
examination of European Social Survey data by Guiso et al (2017) finds that the respon-
siveness of the electorate to populist ideas and the supply of populist politicians increases in
periods of economic insecurity. Social and economic transformation, and the insecurity and
inequality it can engender, may create environments in which opportunistic politicians are
able to plant erroneously simplistic world views into the electorate. Linking belief forma-
tion, at its most fundamental level, to ongoing economic and political events allows a richer

characterization of political cycles, and is something we intend to explore in future work.
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Appendix I: Proof of Convergence in a Generalized Model
(a generalisation of Theorem 1)

In this appendix we prove convergence to the probability limits for beliefs and the
share of time each type is in power given in the paper in a generalized framework.
Specifically, while in the paper all k potential policies were relevant (i.e. had non-zero
effects), in this appendix we allow that some may be irrelevant and have zero effects.
While the beliefs of "complex" types are correctly specified, in that they include all
relevant policies, "simple" types erroneously exclude a subset of these. The prior beliefs
of both types may include some irrelevant policies that have zero effects, and we impose
no a priori restriction on the relative number of policies, k; and k., each type believes may
be relevant, other than that their union covers the set of k policies that are systematically
implemented. The monikers "complex" and "simple" derive from the fact that the
endogenous asymptotic equilibrium looks much like that assumed in the paper, where the
non-zero beliefs of the complex are broader than those of the simple.

We begin by reviewing notation. H = X 4+ N denotes the 7 x k history of policy
and noise, H; and H.; the k; and k.; columns of that history deemed relevant and irrelevant
by type i, and B, B; and B-; the true values of the parameters and the subsets of these
associated with the policies type i believes are and are not relevant. H;; and H_; are the
rows of H; and H_; associated with the ¢; periods when type j is in power, with t; + ¢, = 1.
We use the notation H.; to denote the #; x k history of all policies during the periods type j
is in power. I and 0,,,, denote the identity matrix and matrix of zeros of the indicated
dimensions.

(A) Preliminaries: Standard Matrix Algebra Results & Some Lemmas

A symmetric positive definite matrix V allows the spectral decomposition EAE',
where A is the diagonal matrix of strictly positive eigenvalues and E is a matrix whose
columns are the corresponding mutually orthogonal eigenvectors, with EE' = E'E =1.
V'=EA'E' ,i.e. the inverse of V has the same eigenvectors as V and eigenvalues
equal to the inverse of those of V. We can also define V*=EA™E' as V"V =
EAE'EA™E =EA'E'. In a similar spirit, V> = V'V has eigenvalues equal to the

square of those of V"' and the same eigenvectors. For a rank one update of V using the
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vector X, the Sherman-Morrison formula tells us that (V+xx)"' =V~ -
V'xx'V'/(1+x'V'x) , while the eigenvalues of the matrix (V + cI), with ¢ a constant,
are given by A + cI, and the eigenvectors are the same as those of V. The eigenvalues of
V are all weakly increasing following a rank-one update (Golub 1973), so if V is initially
positive definite (with strictly positive eigenvalues) it remains so following a sequence of
rank-one updates. The maximum across all possible vectors x of the Rayleigh quotient
x'Vx/x'x is the maximum eigenvalue of V, which we denote with A;,x(V), with Ayin(V)
denoting the minimum eigenvalue.
The following two lemmas are used repeatedly in our proofs:
(L1a) % i 0,.; (L1b) g i 0,.; (Llc) ? i 0,,; (L1d) g i o1,
(L2) eH(H'H,)'(HH,) 'He i 0

where I; and 0;,; denote the identity matrix and matrix of zeros of specified dimensions,
i denotes "converges in probability to", and the 7 X k matrix H = X + N denotes the
history of desired policy and noise, H; the columns of that history viewed as relevant by
type i, and € the 7 x 1 history of the iid error in the realization of y.

The i™ element of the vector (L1a) is
xingn

(A1) ZT’

As each ¢, is independent of contemporaneous policy and past shocks and policy,
applying the law of iterated expectations (i.e. taking the expectation at time O of the

expectation at time 1 of the expectation at time 2 ... ) one sees that
1 1 2 4
(A2) E{z xiné‘n} =0, E (z xmé‘nj => E(x;)0?,
n=1 n=1 n=1

As x; is bounded by the total resources devoted to policy (R) its expectation exists and is
bounded:
2 © 2 R 2
(A3) E(x;) = [ P(x, 2v)dv = [ P(x)2zv)dv < R

Consequently, the average of the summation converges in mean square and hence in

probability as well
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{ — 00
n=l1

(A4) 1imE{zmeﬂ 0 & limE

2
(Z%H imR% =g = ZXM‘E‘”/I 5o,
n=l1 -
which establishes (L1a). The i x jth element of (L1b) is
rx.n.
(AS) Y=
n=1 t
and since nj, is an iid mean-zero finite-variance random variable, by the same logic as
used in the proof of (L1a) this converges in probability to zero. Finally, the i" element of
(L1c) and i x /™ element of (L1d) are

(A6) ini"tg" and Z Min ’".

n=1 n=1
The product of two iid and mutually independent random variables is an iid random
variable in its own right, and hence by the strong law of large numbers these terms
converge almost surely to their expectation, which proves (L1c) and (L1d). Cross-
products based on the policies and noise each type believes are relevant, X; and N;, are
simply subsets of the results in (L.1), and obviously follow the same probability limits.

Turning to (L2), we begin by noting that

I ] -1 ! -1 ! ! ! ] -1 ! -1
A7 sH,.[Hl.Hl} {H,.H,} He _ &H, His)Imax[[HiHl} {H,.H,} J
t t t t t t t t

_ £H, H,s/] (H;H,.j_2< £H, He (H;H,.—X:.X,.J_Z

AL
t ot t t ot t

where in the first inequality we use the properties of the Rayleigh quotient, in the
following equality the relation between the eigenvalues of matrix products and inverses,
and in the final inequality the fact that in the 7 rank one updates of matrix H;H, - XX, to
H'H. the eigenvalues are always weakly increasing. Noting that HH, - XX, =

X'N, + N'X, + N'N, and applying the probability limits from (L1), we see that

¢H, Hls HH -XX\" » _
(A8) t A ( t j - 0,04 (g1)” = ) =0.

n

Since ¢'H,(H'H,)'(H/H,)'Hlg is a non-negative random variable bounded from above

by a random variable whose probability limit is zero, it follows that (L2) is true.
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Standard econometric proofs start off by assuming that the plim of (H'H,/¢)™"is a
positive definite matrix, arguing that the plim of €'H, /¢ is a vector of Os, and then
drawing conclusions about the plim of (HH,)'H'g. In our case, since the regressors
are endogenous, we cannot make a priori assumptions about whether the plim of
(HH,/ 1)"'even exists. However, as (L2) shows, a quadratic form based upon
(H'H, /)™ is easily shown to be bounded and to converge to zero provided there is
minimal noise. In the proofs below we make use of such quadratic forms to prove that
beliefs and other objects of interest converge.

(B) Convergence in the Generalized Model

The complex's model incorporates the effects of all policies whose effects are

non-zero and their mean beliefs are given by
(Bl) BC = (H,L‘HC)_lH:]y = (H:]HC)_IH:](HCBC +H~CI3~L‘ +£) = BL‘ +(H:]HL‘)_1H,L‘8’

so (B, -B.)(B.-P.) = ¢H,(HH,)" (H.H,)"H'e - 0,
where the first line uses the fact that all elements of B, are zero and the second line
follows from Lemma 2 above. Consequently, we know that the beliefs of the complex
converge on the true parameter values

(B2) B, - B. .

and in the probability limit the complex implement policies

(B3) ByR/P'B

where R denotes the available resources and where we have used the fact that since the
elements of P, are all zero we can express complex policies in the areas they believe are
irrelevant in terms of these parameters as well. The remainder of this appendix is
devoted to proving that simple beliefs B, converge on the steady state values 7 B, where
T =\BB/ BB, . We note that 7 is strictly greater than 1, as we assume that simple beliefs
are misspecified, so B_, #0,_ ;.

The simple's mean beliefs are given by the coefficient estimates in the

misspecified regression
(B4) EA‘ = (H'YHY)_IH'Yy = (H'YHY)_IH'YHB + (H’YHY)_I H’Y8 >

so with a similar use of Lemma 2 we have
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— p
(BS) B, —(H,H,)"H HB - 0.
Since H;HA‘ = HTYSHXS + H:‘CHSC and H'YHB = H:‘SHSXBS + H:‘SH"'SA‘B"'X + H;CH'CB > We haVe

(B6) B, - B, +(HH, +H H )'[-H,H B +H H p +HHp]

We now consider the possibility that the limit of #/¢, is infinite along a particular
equilibrium path. As in these circumstances the limit of #;, must be infinite, we can
calculate the following probability limits

NN, 7

H H_, X' N_,,
5§ SS = 5§ SS + S N 0
1R t,R t,R

HH, XX _ NX XN N'N, 7 o

S8 S S5 S5 S5 n
+ + S

(B7)

koxk_

t,R t,R t,R t,R t,R R
HH -X X HH_ H H. »
& if lim t(. < 00’ SC SC SC SC N Ok @ SC SC N Ok @ & SC MY N Ok o
tSR o tsR o tsR '
o1 HH -X X _t NX XN NN |7 10
OI' lf llm tc = oo’ SC SC SC SC = _( SC SC + SC SC + SC SC N . n Ik = Ok @
t,.R t,| t.R t.R t.R © R o
H;(‘HS(‘ tC X;(‘XS(‘ N;(‘XS(‘ X’SCNS(‘ N’SCNSC P 1 BSB’S 0-3
— = — —t——+ -+ - — |t = 0,
t.R t,| t.R t.R t.R t.R ol BB R
1 [ 1 1 1 r 2
& HS('H‘L' = t_{, XSL'X'(' + NS('X'(' + XS('N'L' + NS('N'(: i l BSB + [i Ik ’Ok " ] = Ok “
t,R t,| t.R t.R t.R t.R ol Bp R T T '

where we make use of Lemma 1 earlier, the fact that H_;, = N_, as the simple set all
policies they believe are irrelevant to zero, and in the last four lines that either the limit of
t. is finite, in which case we are dividing the sum of a finite number of random variables
by a number (%) that goes to infinity, or the limit of 7. is infinite, in which we are dividing
matrices that have finite probability limits by a number (#,/7.) that goes to infinity.

Following the approach of the proof of Lemma 2 earlier, we can then argue that:

(B8) V!(H! H )—2 v < V’V < V'V /(tYR)Z i 0’/<le0ij1 _
o A HH)* ™ A (HH, -XX)/tR)}  (0;/R)?
_ p v H H H H H H P
= VHH)?v - 0, where — =——2 ¢ 4w _wfg s g ()
( s s ) téR téR I}J téR B K téR B kox1

Combined with (B6), this implies that simple beliefs converge on the true parameter

2
values, i.e. B, — B,. In this case, however, the simple have strictly lower intensity than
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the complex and hence must lose power to the complex. In sum, if the limit of #,/z, is
infinite, with a probability asymptotically approaching one the complex are always in
power. Consequently, with the exception of equilibrium paths of probability measure
zero, the limit of #,/f. can not in fact be infinite.! Going forward, we focus on equilibrium
paths along which the limit of #/z. is finite, which implies that the limit of 7, is infinite.

We now consider the possibility that the simple are in power only a finite number
of times. In this case, as the complex will be in power an infinite number of times, we

use Lemma 1 again to calculate

HH XX NX XN NN 7 pp o’
SC SC o SC SC + SC SC + SC SC + SC SC S s +_nIk

(B9) iy £
t R t R t.R t.R t.R BB R

H’scH' c X'scX° c N'scX° c X’scN° c N'SCN~ c P B B
= + + +

% [Ik 0]

t R t R t R t R t R Bp R
HH,_  » H H i
& ssT7ss () , ssT7ass ()
tc R koxk tc R koxk_,

Applying these to (B6), we then conclude that if the limit of # is finite

_ 8.5, " g o BB o
B10) B, — B, + L | [t Bt B 10, 1]
(B10) B, - B, L}B . } Lw . Jﬁ TLAR L
“p +[(R/0’2)I __BBUR/G) BB }( wjﬁ _p+ (L"BBIBD) o
f "R L+BBU(RIGH/IBBN BB o, IR+BB. /BB

From (B10), we see that as the ratio of noise to the information revealed by policy

(0’ 1 R) goes to infinity, Es i B,. This implies that asymptotically the simple have
strictly lower voting intensity than the complex, which is consistent with their being in
power only a finite number of times. In contrast, as an / R goes to 0, (B10) reduces to

Bs i B,(B'B/B.B,), which implies that asymptotically with a probability approaching one
the simple's voting intensity is greater than that of the complex, thereby, with the

exception of equilibrium paths of probability measure zero, contradicting the assumption

'Since in the probability limit simple intensity is less than that of the complex, any paths such that
the frequency in any fixed time interval that the simple are in power is asymptotically bounded above zero
(as is necessary for the limit of #,/z, to go to infinity) must be of zero measure in probability.
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that the simple are only in power a finite number of times.” Going forward, we shall
assume o /R is sufficiently small to ensure this is the case. Along with our earlier
results, this implies that, outside of a set of equilibrium paths of probability measure zero,
along any other equilibrium path the limits of both 7. and ¢, are infinite, while the limit of
ti/t. is finite. We focus on such paths.

With the preceding in hand, we can conclude

H:‘CHA‘L‘ i BSB; +i}fl & H:‘CH'L‘ r B B

B11 I, ,0 both asin (B9
(BI1) R gp R © R B R[k ra ] ( (B9)
HH -X X 'X X' ' rg? H H P
& S5 S8 S8 S5 o NSS S5 + SSNSS + NSSNSS N Un Ik and S8 ~ 55 = Ok Xk .
t.R t.R t.R t.R R - t.R

Applying these to (B6) we see that

' ) -1
(B12) B — B + X Xys‘ +t§ n Ik +BA"BS +0-n Ik ”
t.R t, R B'p R ©

[_{Bx_hifl }B {BB
Bp R Kk, Ps B'p k’ kxk

— P 4 + 2 ]
LB L B +eMB,. where M= XeXu J L0 Tuy (BB o BB,
t.R t. R [5 B'p

We note that

BI3)H) A MH=A. M) < )Imm( X, ]

=/]mm(t+t U"Iﬁﬂﬁj (l+t Un] ﬁz
t, R BB t. R g,

(& &

so the product of M times the probability limits of H' H_/z R and H H, /t.R ,and
M'l*ts/tC times the plim of H  H__ /¢ R , all as given in (B11), is bounded, thereby
validating the transition from (B6) to (B12).

*Similar to the previous case, if the probability limit of simple intensity is greater than that of the
complex, then paths such that the frequency in any fixed time interval that the complex are in power
asymptotically goes to 1 (necessary for the limit of #; to be finite) must be of zero measure in probability.
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Figure B1: f(cM") and f (¢M™) for Two-Dimensional Simple
B.B, =B, +f(cM™)

From (B12), we see that the asymptotic intensity of the simple equals
(B14) BB, — BB, +2£(M™)+ f(*M™),
where f(cM™)=cfM7'B, and f(c’M*)=c’BM M,
are quadratic forms involving B;. Moreover, from (B12) we also see that

(B15a) B,(B, ~B,) ~ /(M) & (BISb) (B, ~B,V(B, ~B,) - F(M™).
s0 f(cM™) is the equation of a plane perpendicular to the ray from the origin defined by
the true parameter values, while f(¢*M )" is the distance of the ray from the true
parameter values to mean beliefs. These are illustrated graphically, for the case where
involves two policies, in Figure B1 below.

If aps denotes the coordinates of the intersection of the plane defined by (B15a)
with the ray from the origin defined by B (see Fig B1), we can substitute o, for ES in
(B15a)

P p
(B16) B.(aB, =B,) ~ f(cM™) = (@-1)’'B'B, —~ f(cM™)* /BB,
However, the square of the length of the line segment from By to ap; is also (a -1)*'B, .

By the Pythagorean theorem this must be less than or equal to the square of the length of
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Figure B2: Asymptotic Phase Diagram for f (¢*M™) and f (cM™)

f(E@M?) f(M?) fEM?) fE@M?) =
=lof(eM)? =k f(eM)? f( M) BB, ky >k > 1/B' By
\ II
\ D'nD — ! |
\\ sPs ™ B B )
\ I
\ I
\ & : I
\ I
\ P /
AN i Simple | I when the Complex are in power
\ ! in power ; / 1 2 1,2
\ [ df(eMy/de > 0 and d[f (cM)/f(cM™)*)/dt <0
N\ | when the Simple are in power
\\ ‘ / df (eM™Y/dt < 0 and d[f (cM)/f (M) 1/de <0
Complex  \ : )/
in power % /
HIA / .
AN I ,/ evolution to steady state
.':.. \ \ .-".::. / /
/ /%Z( R / phase diagram arrows
‘/:/ stEady state
/ /// \\ ( Bs = TB K )
: fleM

the line segment from P, to BS , which equals f (c*M™). Consequently, f (*M?) >
F(eM /' Bs , with equality only when B, actually equals aB,.’> In sum, another
interpretation of f(cM™) is that it is proportional to the projection of the deviation of the
simple's beliefs from the truth (B;) on the direction B,, a measure of bias, while the ratio
FEMf(cM™)?/B'sBs] is the secant® of the angle of deviation from the direction .
Figure B2 draws the asymptotic phase diagram for f(¢cM™) and f(¢*M™). The

downward sloping dashed line, with slope -2, denotes the combinations that are
consistent with B'B, =B’ , i.e. the simple having the same voting intensity as the

>This result is also an implication of the generalized Cauchy-Schwarz inequality, which states that
for a positive definite matrix S, and vectors x and y, (x'y)” < xX'Sy*x'S"'y (Anderson 2003). Lettingx =y =
c"B,M " and S = M. we have (cB'M"'B,)’ < cB'B.cB M M, — f (M) > f (cM")/B'B..
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complex, based on (B14) above. Above the line the simple are in power, while below the
line the complex are in power. Also drawn in the figure are "level curves" of the form
f (CzM-z) = k*f (cM'l)z, with each curve defined by a different value of the constant k.
The lowest curve, with f(c”M™?) = f(¢*M)*/p'sBs, passes through the steady state, as
B, there is proportional to B,. We prove the following results further below:

(B17a) If the complex are in power df (cM™")/ds > 0 and d[f ("M )/f (cM™)*1/dr < 0,

with equality only along the steady state level curve;
(B17b) If the simple are in power df (¢M)/ds < 0 and d[f (¢’M)/f (cM™)*1/dr < 0,
with equality only along the steady state level curve.
(B17¢) No matter which type is in power, lim,_.., df (cM")/dt = 0.
Asymptotically, when the complex are in power, bias as measured by the
projection onto the directional vector given by the truth monotonically increases
(df (cM")/dt > 0), while when the simple are in power it monotonically declines
(df (cM")/dt < 0). Regardless of which type is in power, the angle of the deviation of
beliefs from the direction implied by true parameter values monotonically falls,
dD‘(cZM'Z)/f (cM'l)z]/dt <0. As shown formally below, this effect comes from two
factors: (i) noise, which regardless of which type is in power lowers the directional
deviation of beliefs from s, and (ii) the policy actions of the simple which, insofar as
they are not proportional to s, when contrasted with the actions of the complex reveal
information about the relative effects of the & policies the simple consider relevant. The
asymptotic collinearity of complex actions means that the effects of policies the simple
believe are irrelevant can be loaded upon on any of the policies they believe are relevant.
The effects of this bias are expressed in the form of movements of the line defined by
B'B, =B'B, + f(cM™), but simple beliefs in principle could lie anywhere on this line. It
is noise, plus the contrast between the effects of simple and complex actions when simple
policies are not collinear in the area of overlap, that gradually reduces the deviation along
this line from the ray of;.
(B17a) and (B17b) together establish that in the probability limit simple beliefs

evolve toward the steady state following zig-zag paths such as the one drawn in the

figure. (B17c), along with the monotonicity of f (®MP)/f (cM™)?, ensures that these
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movements eventually stop. As a final step, we need to show that when simple beliefs
stop moving they must be at the steady state given in the figure, i.e. they cannot converge
on some earlier point in the phase diagram path. We will first show that if simple beliefs
converge they must converge to a point on the lowest level curve of the phase diagram,
where simple beliefs are proportional to f§;, and then show that this implies convergence
to the steady state.

We return to the equation B, =B, +cM™'B,, as defined in (B12), plugging in the
probability limit of X' X /7, given knowledge that simple beliefs converge

B18) M=V + BB i v L BB v J”I
BB t. BB, t R
" M_IBY{V_I_V‘B'SB;_IV‘ /B"B}BY: V7B,
‘ 1+ V B, /PP 1+B,V B, /PP
- :t{ R _tXBSB;(R/ro:ffz/B;BS}
to; 1+t (R/tgy)
_ ct, R tB.p.R* /1T BB,
- B‘YHBS+1+B;V_1BS/B'BL03 b~ 1+1.R/t07 BY}
= 7 1+B,VB,/B'B+c(R/0,)t /1)

= B, -7P,, where 7= = =,
‘ ‘ ct,1,B,8,R* 11°0,B.B,

1+t R/t0;

1+B, V7B, /BB +

so we see that simple beliefs in the probability limit must be proportional to ;. We use
this fact to calculate to B,V ~'B’ and substitute in the expression for 7 (using as well the
fact that BB, /BB, =1/7)
1 2 2 4 ' 2
(Blg) B V—IB _t RB B thstR /t O-n j| — tCRBSBS /to-n

to; 1+t,R/t0; 1+t,R/t0;
2
+BB LRIIO, Rty i
_ BB 1+1.R/10

BB, tR/tU 1ctctSR2/tzaj
BB 1+t,R/tg. T 1+t R/t0;

c(RIT2)t. 1)

= 1=1+ ;
1+(t, /t)(R/Jf)+BBS,l:;(tC/t)(R/Jf)
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The right hand side of the last line is decreasing in ¢/t and increasing in z./t, so we have

dr dr : : (1-B.B. /BB

(B20) <0, >0, lim 7=1& lim 7=1+— L,
A/t d@ /) gk, ot g a>/R+BB. /PP

t

The last expression was encountered earlier in (B10) and as U,f /' R goes to zero leads to a
biaslevel T=7>>7 .

(B18) - (B20) together ensure that movement in Figure B2 continues until simple
beliefs converge on the steady state with bias 7 equal to 7. In the probability limit beliefs
must be proportional to B;. When ¢/t =1 - 1./t is such that in the probability limit bias is
greater than 7', with a probability approaching one the simple will be in power and 7/t
will rise while 7./¢ falls, ensuring that 7 falls, with opposite effects when 7 is less than 7"
and the complex are in power. For small enough 0. /R the limiting values of 7 as #,/t
goes to zero and one encompass 7 , ensuring that the probability limit of #,/7 is the one
consistent with bias equal to the steady state value 7, as given in the text.

We now prove (B17a) and (B17b), turning to (B17c) at the end. We start by
calculating expressions for f (cM'l) and f (cZM'Z) using (B12) and the Sherman-Morrison

formula:
(B21) f(cM™)=cp {VJFBBH B., where V—Xt;f +t~v;:tf ij’zl,ﬂ
gy VBBV B SN AN )
_CB{V 1+BLV_IBS/B'B}I55 IR E AA N
2 N AN
M
feMh= C'{ BB} [ BB} .
:sz[v_l AT AN /w}{ v VBBV /B'B}BS:
B VB /BB]  1+BV B /B

CBVIVE, . f(@M) _BVVB,

= f(czM_z): P 10N 2 -IN2 T pfv-lp 22
(1+B,V B,/BB) f(eM™)” (BVB,)

We then use the spectral decomposition of V to create two key expressions:

i=1

22 2
kg rx7r-lx7-1 Z/Lai
(B22a) BVB, = Aa?, (B22p) B¥ VB %

1 2 kg kg
i=1 (BYV Bv) Z/}ia?z/‘[af
i=1 i=1
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where A, =...2 A >...2 A_are the ordered eigenvalues of V"' and the g, the inner-
products of the associated eigenvectors with By, i.e. a = E'B;. From the matrix algebra

results given earlier above, we know that:

(B23) A, = Lz
V.t (ts + tC)Jn

where J; <...< ), <...< ), are the ordered eigenvalues of X X . While the /; are in
descending order, the corresponding y; are in ascending order, as the two are inversely
related. The eigenvector matrix E of V™' is that of X’ X and hence, conditional on a
given value of X X, not a function of #., t, or g>/R. When beliefs are proportional to
Bs, only one of the a; in (B22) is non-zero, i.e. one of the eigenvectors in E is

B./(B'B,)” and the rest are orthogonal to Bs. This can be seen by noting that

- BB | L VIBBV/EB
B24) af, =P, =P, +c| V+o2s | B, =P, +c| V' ———es
(B24) aB, =B, =B, { MJ B, =B, c{ v 7pp
_ VB, e @=DA+BV B, /BB)
= aBs _Bx +1+l3:v_ll33 /B’B = V Bx c Bx7

so B, /(B'B,)" is an eigenvector of V.

When the complex are in power ¢, is the only element that changes in V and hence
the asymptotic effect on (B22a) and (B22b) can be calculated by simply looking at the
implied changes in the eigenvalues in (B23). When the simple are in power, ¢, changes,
with effects through eigenvalues similar to those of the complex, but X' X also changes,
with effects on both the eigenvalues and eigenvectors, i.e. the a; terms in (B23). We first
calculate the effects of changes in 7. and t,, and then examine the effects of changes in
X, X, , showing that they move (B22a) and (B22b) in the same direction as implied by

increases in .

Taking derivatives with respect to ¢, and z;, we have

A +t O A 2
B25) A= RU*1IO) o g Ao RLO,
dt, (y,+@, +t)o)) dt (Y, +(t,+t,)0,))

c N

From (B25) we see that when the complex are in power ¢, increases and all of the

. -1 - . . . - .
eigenvalues of V™' increase (with no change in the eigenvectors), so B.V™'B, increases

-33-



and, consequently, f (cM'l). When the simple are in power ¢, increases, which lowers all
of the eigenvalues of V™' (without changing the eigenvectors) and hence lowers f(cM™).

Taking the derivative of (B22b) with respect to any eigenvalue, we find:

)
B V')’ 2a’ 2 &2 2
(B26) m <Zi 5 PZA ;Ajaj}
So,
d(BLV_lV_IBSJ
B.V'B,)’ 2 o | d4,
2  — A ha Aa
(B27) dr, (Zi, p zla{ Z Z }dt.
= (Zi )322a2a2(u 12)—
V< 2 2 42 % 42 %
Z p )BIZ;@.Q{(&AJ ij)dtc+(ii/1j z,.)dtj <0
as

g, (V=Y AR,

<0,
R’

di di,
B28) (LA —AH)—t+(AA —2)—L=-
(B28) (44, j)dtc (44 l)dtc
with equality when &= 0 or a; is non-zero for only one eigenvalue (i.e. the simple are on
the level curve associated with the steady state with beliefs proportional to Bs). Similarly,
B.V'V'B,
B —IB ) ky-1 kg ) M ) d/’{
. aa;|(AA, —A)—L+(AA, -4 )—L] <0
dr, (Zia)zz |G Dar, T4H TG

i=1 j=i+l s s

(B29) (

as

dA,

B30) i -1 Y%w g - Y-
o dy T T de

s N

AR
t3R‘3 |

<0,

with, once again equality when o~ = 0 or when beliefs are proportional to s and g; is
non-zero for only one eigenvalue. Intuition for why (B27) and (B29) are identical can be
found by noting that while ¢, appears in the numerator of (B23), this element implicitly

cancels in the ratio (B22b). Consequently, all that is left is the influence of ¢, and ¢, in the
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denominator of (B23), where they are both multiplied by g . As time passes, regardless
of which type is in power, random noise lowers the angle of the deviation of the simple's
beliefs from the direction implied by the true parameter values.

We now consider the impact of periods when the simple are in power through its
effects on X' X . f(cM) is monotonically increasing in p.V B, with V as defined in
(B21). Each period when the simple are in power and implement policies X generates a

rank one update of V, so that B.V™'B, becomes

i — VIxx'V'/1 R
(B31) l{w—} B, l{ —HX,V_IX/QR}BS

c

BV 'xxV'B /t R
1+x'V'x/t,R

=B,V7B, - <B.V'B,.

so this effect lowers f(cM'l) as does (as already proven) the increase in ¢, that
accompanies periods when the simple are in power.

Turning to the ratio f(cM?)/ f(cM™)?, equal to p'V'V'B_/(B'V'B.)*as shown
in (B21), we again calculate the effects of the rank-one update of V

B V_I_V_IXX'V_I/tCR V_I_V'lxx'V'l/tCR B
' 1+x'V'x/t R 1+xX'Vx/t.R |

gyt o VIXVIR [ VIRVIR )
* 1+x'V'x/t.R | 1+x'V'x/tR [’
mey (L mb 11.R)? = 2(mi. m ﬁx/zR)(1+m /t.R)+m, /(R

(B32)

lix X'X Bx

,with m', =a'V™'h.
[my g (1+my, /1 R) = my my, /1 R] ab

We wish to show this is < B\V'V™'B /(B V™'B,)* =my, /my, my, , with equality only
when B, is proportional to P, i.e. when simple beliefs lie along the lowest level curve
where f(cM?) = f(cM /B’ B,. If ES is proportional to B, then so is policy implemented

by the simple. Say x = af,, then we have my,, = amy, and (B32) simplifies to:

2 1 2 2 .2 1 1 4 1 2 1 2
Mgy (L+my /1. R)” =20 mygy my, [t R)1+my [t.R)+a " my, my, my, /(.R)

(B33) 1 1 21 1 2
Ly, (14 [ 1.R) =0y g /1.R]
2 1 2 1 2 2
_ My [Army J1R) —amy, TRy
1 1 1 o ~2 1 2 1 1 ’
My My (¥ M J1R) =0y T1RT gy gy
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as desired. Our next task is to show that (B32) is asymptotically strictly less than
my . | my , my,  if beliefs are not proportional to By

We begin by noting that asymptotically simple beliefs are given by

(B34) B, -, +cMp, =B, +{v+%} B,
cV7B,
+B VB, /BB

1+B. V7, /B'p
where ¢ = 1 - B',B,/p'B, so using x =p,/R/B.P,

; ; cmi
(B3S) my, = |—| iy +—— D
S BT tmy, BB

i+l 2 i+2
N 2cthX_BA_ N c’myy |
(I+my, (BB (+my, /BB

(B35) tells us that all my,, and my, can be expressed as a combination of m, terms.

=B, +{V‘1 _VBpVT /B'B}ﬁs =B+

and m;.x :_’—_ m';;BS
BB,

Each my, is asymptotically bounded, as

rx7—Jj AV U - B;Bx B;Bx B;BS
(B36) B.VP. <A (VOBB, A (V) = A (V=X X /tRY S(a—j/R)f

where we have made use of the definition of V from (B21). Added to that the fact that
(B34) implies that BB, = BB, , and we can see that all mlg .and m/. are bounded from
above and the limit of (B32) as 7. goes to infinity is m; 5! mé ﬁjmé; s, » as should be
expected since the rank one updates of V, x/(tcR)l/z, get smaller and smaller.

With the preceding in mind, consider (B32) as a function of 7., g(#.), with

X'V - 2m,
(B37) g'(fc)=(ﬁ{v_l‘vx xV /ICR}BSJ o~

1+x'V'x/t R 1’R
c c
1 2 1 1 2
My (Mg My —nig . M|
Bix LB xTBx BiB, " xx 1 2 1 2 1
* R +(+my, /1 R)my my, —my, my ]|

C c3

B

Substituting using (B35), we have
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3 2

R CMg: Che
(B38) ¢y = || | gy P gy =gy |y B
sts (1+ My, /BB 1+ Mg g, /B'B)

3 1 a2 2
_ _R_ C(my g My ~ Mgy Mg ) >0
\ BB, (1+myy, /BB)

as my, my, =B.VBBVIB = (VB (VE2B)VTB) (VB

> (V2B (VB )V (V2B =BV BBV B, = myy my,

while ¢, =

t.R BB, (1+my, /B'B) (1+my, /BB

where we once again use the Cauchy-Schwarz inequality. We are unable to sign c;, but

1 2 2 _ 3 1 2, 3 2 1 4
Myx R {c(mﬁkﬁxmﬁlﬁ.; My, My, ) € gy My =My My )

since ¢; > 1 and ¢3 >0, if ¢ is strictly positive it follows that g'(z.) is strictly positive and
consequently g(z) is strictly less than my,, /my, my, for finite 7. as long as simple
beliefs are not proportional to ;. Going forward, we assume this is not the case, i.e. that
1 <0.

Using the work above, we formally note the upper bounds on R/ B;BS, méfyx and

. . 1
the maximum eigenvalue of V

(B39) >=—, my, =|RPB

. R my, .
(B40) + =2 WTmax(l, cA ).

Substituting into ¢; + c;c3 using (B38) and 7. > t

and define ¢ as

1 2
x T Myg My

R

< by assumption

1 2
<Ly, m

m .
(B41) -

_ 2 1
Mg g M ]

Bs Bx

1

B
tc
0 from (B35)

+(1+ my, [t R)my my,

>1

1 2 2 _ 3 1 2, 3 2 1 4
S Myx R {C(’"ﬁ;mmﬁgm My, Myp,) | C (Mg My =My My, )

~ 'R BB, (I+my, /BB (I+my, /BB

3 1 _ 2 2
L IR c(Myy Mgy — Mgy Mg )
|=— 1 :
B:B, (A +myg, /BB
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_[R clmyy my, —myy m )(l_ R my, +
B.B, <1+m§;ﬂ\,/|3|3) 12 VBB, 'R

>0 from (B38) 20 from (B40)
~ . 1 o\
[B;B, 1 RU+my, /B'B)
R 2eml,
my, .’ R UL
= lex Tl arn (mﬁvn m;'B‘ _mlli"B mg,ﬁ‘)+ >/"from (B40)
r R(1+ Mg, /B'B)” BB, w3 2
(g g Mgy = Mgy My, )
L >0 from (B38) ]

1 2
Mg C R [ .
pix 3 2 1 4 * 3 1 2 2
> : — Mgy Mgy +A (Mg Mgy — Mgy My )].
* 1 2 Myp, My, BB TBB, BB BB, BB, BB
t R(1+my, /B'B)” B.B,

Cy

Focusing on ¢4 in the last line, as m'3 =B. VB, , we use the spectral decomposition of

V! asin (B22) earlier

k, k, k,

(B42) ¢, ZZAfafZ/‘f f—ZA a; 2/14612 +A 2/13 22/1 2/12 22/1,.2411.2
i=1 i=1 i=1 i=1
k=1 kg k=1 kg
=23 S AR = A @2a +208 Y S (HA, -2 K )dla
i=1 j=i+l i=1 j=i+l
k-1 k,
=25 DA AKX DA, A el
i=1 j=i+
k-1 kg k=1 kg
2 Z Z[/P/}z A /1‘; +4 (/1?/11. —Af/ﬁ )]ai Z Z[/]4/1 -4 /14 = 0,
i=1 j=i+l i=1 j=i+l

where we have used the fact that the /; are ordered in decreasing order, with ;> ... > 4; ...
> A, . The last line of (B42) holds with strict inequality whenever there exists a
difference between the maximum and minimum eigenvalues corresponding to non-zero
a;. Strict equality holds when 4; = 4;= 4 for all a; # 0 and a; # 0. But in this case, since a
= E'B,, we have V™'§, =EAE'B, =E(JI, )a=AEa =AEE'B, = AB,, so from (B34) earlier
_p -1
BB~ By BC“’ZII: /BB {1 e /11362 /w}'}“

that is, simple beliefs are proportional to B,. So, we may assume strict inequality in (B42)

and consequently conclude that for all 7, > t*, as long as simple beliefs are not
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proportional to f,, g'(¢.) is strictly positive and hence g(z,.) is strictly less than

my . | my, my . This concludes our proof that the rank one update of X X when the
simple are in power lowers the ratio f(¢*M?)/ f(cM™")? as long as simple beliefs are not
proportional to f, i.e. as long as the economy is not on the (lowest) level curve in Figure
B2 associated with the steady state.

To summarize, when the complex are in power, in the formula for M z, increases,
which increases f (cM'l) and lowers the ratio f (czM'z)/ f (cM'l)Z. When the simple are in
power, ¢, increases and there is also a rank-one update of M based upon implemented
simple policy. Both of these lower both f (cM'l) and f (czM'z)/ f (cM'l)z. These are the
results stated in (B17a) and (B17b). Turning to (B17c), we begin by noting that since the
sum of the eigenvalues of a matrix equals the trace, the individual eigenvalues y; of
X' X, are bounded from above by Rt,. Consequently, we can bound the derivatives in

(B25) and prove that their limit is zero

: '+t O +t.0° +0°
(B44)O<d—/1’: Ry, +1,0,) _R(Rt +1,0,) R(R+0,)

dr, (y,+(,+1)0,) i’o; ta!
A. Rt O°
and 0>d’=— L9, N Rz
dt, Y+, +t,)o)) to,
. +0° ,
= 0<tim@ <im®B*%) 26 & 02 im ™ 2 im- £ =
cedt, e 10, e dt, e 10,

The only remaining effect on f(cM™") with the passage of time is through the rank one
update of B'V~'B,, which, as described earlier in (B31), generates a change

_BVIXX'VTB, /1R _ mymy, /1R

(B45) — ; .
1+xV x/t R I+m, /t R

However, as shown in (B36), all mé .and m.. are bounded from above, while we
established much earlier above that 7. goes to infinity (outside of equilibrium paths of
probability measure zero which we are not examining). Consequently, the change in
f(cM™") through this mechanism goes to zero as well. This proves (B17¢) and completes

the proof of the convergence of E and 6; = t/t in this appendix.
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Appendix II: Proofs for Results on Berk-Nash Equilibria
Proof of Proposition 1: Let the beliefs of type C be degenerate on EC =p and let
the beliefs of type S be degenerate on B, =7'B,, where 7" =./B'B/p'B, > 1. Let

x. =B./R/B'B, and x_ =B./R/P'P . We will prove that this configuration, together with
some interior value of 8,6, , is a Berk-Nash equilibrium.

First note that given these beliefs and actions, condition (/V.1) in the definition of
Berk-Nash equilibrium is satisfied.
We now show that there exists 0 < 6’: <1 such that conditions (/V.2) and (IV.3) are

satisfied as well. First, we find 9: such that

SO q-gyn— L) } .
fBx, —Bx, +¢) fBx, —Bx, +¢)

We do this in two steps: (i) we will show that given any value for &, there is for some 7 a

(Cl) 7B, D{arg min, E{H; In

B.(8.)=T1P, thatis an element of the set of [Ais that minimise the E,_given in (C1). (ii) we
will use (i) and the mean value theorem to show the existence of an interior 8, such that
T'B, is an element of the set of [AiY that minimise the E, given in (C1).

Proof of substep (i): Note that by the equilibrium configuration that we consider,

*

where x, =7'x,,, we have

sc ?

«
X *

s ]

® + B~xcx~xc
[

(C2) B'x.-B'x, =B, -B,)

where ~sc denotes the policies of type C that are deemed irrelevant by type S. We

therefore consider the KL minimizers of

f(&) . f(&) |
(B, -B,)'x, +&) f(B,-B)X, /T +P_ x_ +&)

By the assumptions on f (&), for any 0 <8, <1la solution to the above, i.e. a

(C3)minkE,| 8, 1n +(1-6)1
B

minimum, exists. Fix 8, [J[0,1]and pick such a solution [Ai‘Y (8.). This solution satisfies,

* *
for some a and b

(C4) B, -B,(8))x, =a" and (B, -B,(8,))x, /T +p  x ., =b".

~S5C ~S5C

Plugging the first equality into the second, this system of equations can be written as:

(C5) (B, —ﬁs(t?v))'xf: =a and a /T +p_ X =b".

~S§C ~5C
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Note that any solution to these equations will also be a solution to (C3). Therefore any

vector ﬁs satisfying

(CO) (B, ~B.)x, =a" and a'/T +P_ . x_ =b
is a solution. But the second equation is inconsequent for finding any solution ﬁs and
merely shows how the colinearity of policies imposes conditions on the values of ¢ and

b" at a minimum. Thus, (C6) can be written as:

(CT) B, -B,)X, =a’

which has multiple solutions, including one in which ﬁs =7, for some 7 such that

(C8) (B, ~7B,)'x, =a’
So, without loss of generality, for any 8, J[0,1] there exists a solution to the KL

minimisation problem which satisfies [vi‘Y =71, , which completes the proof of substep (i).

Proof of substep (i1): We now consider colinear solutions to the KL minimisation
problem for different values of & . When & =0a colinear solution is achieved where
p'x - [VSLXTZC =0 so that > t*. When 6 =1a colinear solution is achieved where
B, - ﬁs)'xj =0 at Bs =B,sothatt=1< . By continuity of the minimum value
function, there exists 9; 1(0,1) for which Bs = T*BS is a solution to (C3). This completes
the proof of substep (ii).

The above (i) and (ii) have allowed us to find an interior & such that 7B, satisfies
(C1), as desired.

We now show that the Berk Nash equilibrium conditions (/V.2) and (/V.3) are
satisfied by the configuration given above. Condition (IV.2) is satisified as
BB, =(r")’B'B, =p'B=P.P,. For condition (IV.3) applied to C, note that for type C the

only vector in the support of its belief is B, =p and

(C9) B, =p0 minE{H:ln A R S M— }
. fB.x, -p.x, +&) fB.x —-p.x +&)

To see this, note by Gibb's inequality the Kullback-Leibler divergence

E [In(f(£)/ g(&))] is greater than or equal to zero, with equality if and only if f(£) and

g(&) coincide almost everywhere. As with B, =B we have p'x, - px’ =0 and

ccs

%

B'x_ — B/x. =0 this establishes the claim above.
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For condition (/V.3) applied to type S, by construction we have that Bx =7'B,, the
only vector in the support of S's belief, satisfies (C1). This completes the proof that the
configuration we started with is a Berk-Nash equilibrium.

Finally, we note that when fis normal the first order condition in the minimization
of (C1) implies that ES is the OLS coefficient and when 8, =1/(1+7") =
lim,, (-7 ‘02 /R)/(1+7"), as derived in the paper, B, =P, solves this first order
condition.

Proof of Proposition 2: Below, for type i[J{S,C}, we call a policy an
equilibrium relevant policy (ERP) if the expected belief of type i on the parameter of that
policy is non-zero in equilibrium. Note that equilibrium relevant policies are a subset of
type i's relevant policies under their subjective model.

It will suffice to show that (i) 8, >0 and (ii) C having zero expected beliefs on
some of their relevant policies, cannot both be violated in a Berk-Nash equilibrium.
Assume that they are violated so that €, =0 and the set of ERPs for type C includes all
relevant policies. This implies that the set of ERPs for type C is a strict superset of type
S's ERPs. We now show that this will imply that €, >0. Assume to the contrary that
6. =0 so that type C is in power with probability 1. Condition (IV.3) for type S will

imply that any vector ﬁs in the support of their beliefs must minimise

(C10) E{ln S }
FBx, —Bx, &)

By Gibb's inequality, the Kullback-Leibler divergence is larger than or equal to zero,

holding with equality if and only if both densities coincide almost everywhere. Hence,
the KL is minimised at B'x_ — [ASLXTZC = Ofor each [Ai‘Y in the support. By linearity, this
implies that the mean beliefs of type § also satisfy

(C1D) Bx, =Px..
Given that type C is in power, its average beliefs similarly satisfy:

(C12) B.x, =P'x,.
Note now that S's optimal action given P, is X_ rather than x_,. Thus:

(C13) B.x. =p'x. =p/x, <B!x..

N sc
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Noting that Xj. =Ej R/E;Bj , and hence E;xj =\/E,/E;Ej for jOI{S,C}, we have:

(C14) VRBB. =Bix; =Bix, <Bx, =VR{B:B, = BB. <B.B..
Therefore by equilibrium condition (IV.2), 8. =1, in contradiction to our initial

assumption that 8, =0
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