Applied Stats Workshop (Gov 3009)


Wednesday, January 31, 2018, 12:00pm to 1:30pm


CGIS Knafel K354

The Applied Statistics Workshop (Gov 3009) meets all academic year, Wednesdays, 12pm-1:30pm, in CGIS K354. This workshop is a forum for advanced graduate students, faculty, and visiting scholars to present and discuss methodological or empirical work in progress in an interdisciplinary setting. The workshop features a tour of Harvard's statistical innovations and applications with weekly stops in different fields and disciplines and includes occasional presentations by invited speakers.  Free lunch is provided.

Tyler VanderWeele presents "Sensitivity analysis in observational research: introducing the E-value"

Title: Sensitivity analysis in observational research: introducing the E-value

Abstract: Sensitivity analysis is useful in assessing how robust an association is to potential unmeasured or uncontrolled confounding. This webinar introduces a new measure called the “E-value,” which is related to the evidence for causality in observational studies that are potentially subject to confounding. The E-value is defined as the minimum strength of association, on the risk ratio scale, that an unmeasured confounder would need to have with both the treatment and the outcome to fully explain away a specific treatment–outcome association, conditional on the measured covariates. A large E-value implies that considerable unmeasured confounding would be needed to explain away an effect estimate. A small E-value implies little unmeasured confounding would be needed to explain away an effect estimate. The speaker and his collaborators propose that in all observational studies intended to produce evidence for causality, the E-value be reported or some other sensitivity analysis be used. They suggest calculating the E-value for both the observed association estimate (after adjustments for measured confounders) and the limit of the confidence interval closest to the null. If this were to become standard practice, the ability of the scientific community to assess evidence from observational studies would improve considerably, and ultimately, science would be strengthened.

Reference: VanderWeele, T.J. and Ding, P. (2017). Sensitivity analysis in observational research: introducing the E-value. Annals of Internal Medicine, 167:268-274.

Online E-value Calculator: